Simple ambiskew polynomial rings

David Jordan

School of Mathematics and Statistics, University of Sheffield

David A. Jordan and Imogen E. Wells, Journal of Algebra, Volume 382, (2013) 46-70

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

base ring *A* $A[x; \alpha, \delta]$ α is a ring endomorphism of *A*. δ is a (left) α -derivation of *A*:

$$\delta(ab) = \alpha(a)\delta(b) + \delta(a)b.$$

As a group under +, $A[x; \alpha, \delta] = A[x]$ but

$$xr = \alpha(r)x + \delta(r).$$

$$\delta(ab) = \alpha(a)\delta(b) + \delta(a)b.$$

As a group under +, $A[x; \alpha, \delta] = A[x]$ but

$$xr = \alpha(r)x + \delta(r).$$

$$\delta(ab) = \alpha(a)\delta(b) + \delta(a)b.$$

As a group under +, $A[x; \alpha, \delta] = A[x]$ but

$$xr = \alpha(r)x + \delta(r).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\delta(ab) = \alpha(a)\delta(b) + \delta(a)b.$$

As a group under +, $A[x; \alpha, \delta] = A[x]$ but

$$xr = \alpha(r)x + \delta(r).$$

Special cases: $\alpha = id_A (A[x; \delta]); \delta = 0 (A[x; \alpha]).$ From now on *k* denotes a field.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\delta(ab) = \alpha(a)\delta(b) + \delta(a)b.$$

As a group under +, $A[x; \alpha, \delta] = A[x]$ but

$$xr = \alpha(r)x + \delta(r).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A is δ -simple if there is no non-zero proper ideal *I* of A with $\delta(I) \subseteq I$.

- δ is inner if $\exists a \in A$ such that $\delta(r) = ar ra \forall r \in A$, outer otherwise.
- Theorem: Let *A* be a *k*-algebra, where char k = 0. $A[x; \delta]$ is simple iff *A* is δ -simple and δ is outer.

Examples

- A = k[y], δ = d/dy, xy yx = 1 (the first Weyl algebra).
- A = k[y, z]: there are examples of δ with A δ-simple, due to many people, most notably Bergman and Coutinho.

A is δ -simple if there is no non-zero proper ideal *I* of *A* with $\delta(I) \subseteq I$. δ is inner if $\exists a \in A$ such that $\delta(r) = ar - ra \forall r \in A$, outer otherwise.

Theorem: Let *A* be a *k*-algebra, where char k = 0. $A[x; \delta]$ is simple iff *A* is δ -simple and δ is outer.

- A = k[y], δ = d/dy, xy yx = 1 (the first Weyl algebra).
- A = k[y, z]: there are examples of δ with A δ-simple, due to many people, most notably Bergman and Coutinho.

A is δ -simple if there is no non-zero proper ideal *I* of *A* with $\delta(I) \subseteq I$. δ is inner if $\exists a \in A$ such that $\delta(r) = ar - ra \forall r \in A$, outer otherwise.

Theorem: Let *A* be a *k*-algebra, where char k = 0. $A[x; \delta]$ is simple iff *A* is δ -simple and δ is outer.

Examples

- A = k[y], δ = d/dy, xy yx = 1 (the first Weyl algebra).
- A = k[y, z]: there are examples of δ with A δ-simple, due to many people, most notably Bergman and Coutinho.

A is δ -simple if there is no non-zero proper ideal *I* of *A* with $\delta(I) \subseteq I$. δ is inner if $\exists a \in A$ such that $\delta(r) = ar - ra \forall r \in A$, outer otherwise.

Theorem: Let *A* be a *k*-algebra, where char k = 0. $A[x; \delta]$ is simple iff *A* is δ -simple and δ is outer.

Examples

• $A = k[y], \delta = d/dy, xy - yx = 1$ (the first Weyl algebra).

 A = k[y, z]: there are examples of δ with A δ-simple, due to many people, most notably Bergman and Coutinho.

A is δ -simple if there is no non-zero proper ideal *I* of *A* with $\delta(I) \subseteq I$. δ is inner if $\exists a \in A$ such that $\delta(r) = ar - ra \forall r \in A$, outer otherwise.

Theorem: Let *A* be a *k*-algebra, where char k = 0. $A[x; \delta]$ is simple iff *A* is δ -simple and δ is outer.

Examples

- $A = k[y], \delta = d/dy, xy yx = 1$ (the first Weyl algebra).
- A = k[y, z]: there are examples of δ with A δ-simple, due to many people, most notably Bergman and Coutinho.

A is δ -simple if there is no non-zero proper ideal *I* of *A* with $\delta(I) \subseteq I$. δ is inner if $\exists a \in A$ such that $\delta(r) = ar - ra \forall r \in A$, outer otherwise.

Theorem: Let *A* be a *k*-algebra, where char k = 0. $A[x; \delta]$ is simple iff *A* is δ -simple and δ is outer.

Examples

- $A = k[y], \delta = d/dy, xy yx = 1$ (the first Weyl algebra).
- A = k[y, z]: there are examples of δ with A δ-simple, due to many people, most notably Bergman and Coutinho.

What is the easiest example of a simple skew polynomial ring of the form $R[x; \alpha, \delta]$ with α outer?

There is an example due to Cozzens, reproduced over 5 pages of the 1975 book by Faith and Cozzens, of a simple ring $D[x; \alpha, \delta]$ where *D* is a division ring and α is injective but not surjective.

There are known simplicity results due to Lam, Leroy \pm Jain when *R* is a division ring and to Lam, Leroy, Leung, Matczuk when *R* is simple.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What is the easiest example of a simple skew polynomial ring of the form $R[x; \alpha, \delta]$ with α outer?

There is an example due to Cozzens, reproduced over 5 pages of the 1975 book by Faith and Cozzens, of a simple ring $D[x; \alpha, \delta]$ where *D* is a division ring and α is injective but not surjective.

There are known simplicity results due to Lam, Leroy \pm Jain when *R* is a division ring and to Lam, Leroy, Leung, Matczuk when *R* is simple.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What is the easiest example of a simple skew polynomial ring of the form $R[x; \alpha, \delta]$ with α outer?

There is an example due to Cozzens, reproduced over 5 pages of the 1975 book by Faith and Cozzens, of a simple ring $D[x; \alpha, \delta]$ where *D* is a division ring and α is injective but not surjective.

There are known simplicity results due to Lam, Leroy \pm Jain when *R* is a division ring and to Lam, Leroy, Leung, Matczuk when *R* is simple.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The data: a *k*-algebra *A*,

two commuting *k*-automorphisms of *A*, α and γ , $\beta := \alpha^{-1}\gamma$, $v \in A$ such that $va = \gamma(a)v \forall a \in A$ and $\gamma(v) = v$ (*v* is γ -normal),

 $\rho \in k \setminus \{0\}.$

Form $A[y; \alpha]$ and set $\beta(y) = \rho y$ so that $\beta \in Aut_k(A[y; \alpha])$. The ambiskew polynomial ring $R = R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y; \alpha][x; \beta, \delta]$, where $\delta(A) = 0$ and $\delta(y) = v$.

$$ya = \alpha(a)y$$
 for all $a \in A$,
 $xa = \beta(a)x$ for all $a \in A$ and
 $xy = \rho yx + v$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The data: a *k*-algebra *A*, two commuting *k*-automorphisms of *A*, α and γ , $\beta := \alpha^{-1}\gamma$, $v \in A$ such that $va = \gamma(a)v \forall a \in A$ and $\gamma(v) = v$ (*v* is γ -normal), $\rho \in k \setminus \{0\}$. Form $A[y; \alpha]$ and set $\beta(y) = \rho y$ so that $\beta \in Aut_k(A[y; \alpha])$. The ambiskew polynomial ring $R = R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y; \alpha][x; \beta, \delta]$, where $\delta(A) = 0$ and $\delta(y) = v$.

$$ya = \alpha(a)y$$
 for all $a \in A$,
 $xa = \beta(a)x$ for all $a \in A$ and
 $xy = \rho yx + v$.

うして 山田 マイボット ボット シックション

The data: a *k*-algebra *A*, two commuting *k*-automorphisms of *A*, α and γ , $\beta := \alpha^{-1}\gamma$, $v \in A$ such that $va = \gamma(a)v \forall a \in A$ and $\gamma(v) = v$ (*v* is γ -normal), $\rho \in k \setminus \{0\}$.

Form $A[y; \alpha]$ and set $\beta(y) = \rho y$ so that $\beta \in Aut_k(A[y; \alpha])$. The ambiskew polynomial ring $R = R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y; \alpha][x; \beta, \delta]$, where $\delta(A) = 0$ and $\delta(y) = v$.

$$ya = \alpha(a)y$$
 for all $a \in A$,
 $xa = \beta(a)x$ for all $a \in A$ and
 $xy = \rho yx + v$.

The data: a *k*-algebra *A*, two commuting *k*-automorphisms of *A*, α and γ , $\beta := \alpha^{-1}\gamma$, $v \in A$ such that $va = \gamma(a)v \forall a \in A$ and $\gamma(v) = v$ (*v* is γ -normal), $\rho \in k \setminus \{0\}$. Form $A[y; \alpha]$ and set $\beta(y) = \rho y$ so that $\beta \in Aut_k(A[y; \alpha])$. The ambiskew polynomial ring $R = R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y; \alpha][x; \beta, \delta]$, where $\delta(A) = 0$ and $\delta(y) = v$.

$$ya = \alpha(a)y$$
 for all $a \in A$,
 $xa = \beta(a)x$ for all $a \in A$ and
 $xy = \rho yx + v$.

うして 山田 マイボット ボット シックション

The data: a *k*-algebra *A*, two commuting *k*-automorphisms of *A*, α and γ , $\beta := \alpha^{-1}\gamma$, $v \in A$ such that $va = \gamma(a)v \forall a \in A$ and $\gamma(v) = v$ (*v* is γ -normal), $\rho \in k \setminus \{0\}$. Form $A[y; \alpha]$ and set $\beta(y) = \rho y$ so that $\beta \in Aut_k(A[y; \alpha])$. The ambiskew polynomial ring $R = R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y; \alpha][x; \beta, \delta]$, where $\delta(A) = 0$ and $\delta(y) = v$.

$$ya = \alpha(a)y$$
 for all $a \in A$,
 $xa = \beta(a)x$ for all $a \in A$ and
 $xy = \rho yx + v$.

うして 山田 マイボット ボット シックション

The data: a *k*-algebra *A*, two commuting *k*-automorphisms of *A*, α and γ , $\beta := \alpha^{-1}\gamma$, $v \in A$ such that $va = \gamma(a)v \forall a \in A$ and $\gamma(v) = v$ (*v* is γ -normal), $\rho \in k \setminus \{0\}$. Form $A[y; \alpha]$ and set $\beta(y) = \rho y$ so that $\beta \in Aut_k(A[y; \alpha])$. The ambiskew polynomial ring $R = R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y; \alpha][x; \beta, \delta]$, where $\delta(A) = 0$ and $\delta(y) = v$.

$$ya = \alpha(a)y$$
 for all $a \in A$,
 $xa = \beta(a)x$ for all $a \in A$ and
 $xy = \rho yx + v$.

The data: a *k*-algebra *A*, two commuting *k*-automorphisms of *A*, α and γ , $\beta := \alpha^{-1}\gamma$, $v \in A$ such that $va = \gamma(a)v \forall a \in A$ and $\gamma(v) = v$ (*v* is γ -normal), $\rho \in k \setminus \{0\}$. Form $A[y; \alpha]$ and set $\beta(y) = \rho y$ so that $\beta \in Aut_k(A[y; \alpha])$. The ambiskew polynomial ring $R = R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y; \alpha][x; \beta, \delta]$, where $\delta(A) = 0$ and $\delta(y) = v$.

$$ya = \alpha(a)y$$
 for all $a \in A$,
 $xa = \beta(a)x$ for all $a \in A$ and
 $xy = \rho yx + v$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $A = k, \alpha = \gamma = \mathsf{id}$

• $A_1(k)$, the first Weyl algebra: xy - yx = 1, $\rho = v = 1$.

- the quantum plane: xy = qyx, $\rho = q$, v = 0.
- the quantised Weyl algebra $A_1^q(k)$: xy qyx = 1, $\rho = q, v = 1$.

 $A = k, \alpha = \gamma = \mathsf{id}$

• $A_1(k)$, the first Weyl algebra: xy - yx = 1, $\rho = v = 1$.

• the quantum plane: xy = qyx, $\rho = q$, v = 0.

• the quantised Weyl algebra $A_1^q(k)$: xy - qyx = 1, $\rho = q, v = 1$.

 $A = k, \alpha = \gamma = \mathsf{id}$

- $A_1(k)$, the first Weyl algebra: xy yx = 1, $\rho = v = 1$.
- the quantum plane: xy = qyx, $\rho = q$, v = 0.
- the quantised Weyl algebra $A_1^q(k)$: xy qyx = 1, $\rho = q, v = 1$.

 $A = k, \alpha = \gamma = \mathsf{id}$

- $A_1(k)$, the first Weyl algebra: xy yx = 1, $\rho = v = 1$.
- the quantum plane: xy = qyx, $\rho = q$, v = 0.
- the quantised Weyl algebra $A_1^q(k)$: xy qyx = 1, $\rho = q, v = 1$.

 $A = k, \alpha = \gamma = \mathsf{id}$

• $A_1(k)$, the first Weyl algebra: xy - yx = 1, $\rho = v = 1$.

- the quantum plane: xy = qyx, $\rho = q$, v = 0.
- the quantised Weyl algebra $A_1^q(k)$: xy qyx = 1, $\rho = q, v = 1$.

 $A = k, \alpha = \gamma = id$

• $A_1(k)$, the first Weyl algebra: xy - yx = 1, $\rho = v = 1$.

- the quantum plane: xy = qyx, $\rho = q$, v = 0.
- the quantised Weyl algebra $A_1^q(k)$: xy qyx = 1, $\rho = q, v = 1$.

 $A = k, \alpha = \gamma = \mathsf{id}$

• $A_1(k)$, the first Weyl algebra: xy - yx = 1, $\rho = v = 1$.

- the quantum plane: xy = qyx, $\rho = q$, v = 0.
- the quantised Weyl algebra $A_1^q(k)$: xy qyx = 1, $\rho = q, v = 1$.

$A = k[K^{\pm 1}]: U_q(sl_2)$

 $A = k[b, c]: O_q(M_2(k))$

very recent and with combinatorial motivation $A = k[h, K^{\pm 1}]$: augmented down-up algebras (Terwilliger/Worawannatoi, combinatorial motivation)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$A = k[K^{\pm 1}]: U_q(sl_2)$

$A = k[b, c]: O_q(M_2(k))$

very recent and with combinatorial motivation $A = k[h, K^{\pm 1}]$: augmented down-up algebras (Terwilliger/Worawannatoi, combinatorial motivation)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$A = k[K^{\pm 1}]: U_q(sl_2)$$

 $A = k[b, c]: O_q(M_2(k))$

very recent and with combinatorial motivation $A = k[h, K^{\pm 1}]$: augmented down-up algebras (Terwilliger/Worawannatoi, combinatorial motivation)

うして 山田 マイボット ボット シックション

$$A = k[K^{\pm 1}]: U_q(sl_2)$$

 $A = k[b, c]: O_q(M_2(k))$

very recent and with combinatorial motivation $A = k[h, K^{\pm 1}]$: augmented down-up algebras (Terwilliger/Worawannatoi, combinatorial motivation)

うして 山田 マイボット ボット シックション

Suppose there exists a γ -normal element $u \in A$ such that $v = u - \rho \alpha(u)$.

 $z := xy - u = \rho(yx - \alpha(u))$ is such that $zy = \rho yz$, $zx = \rho^{-1}xz$, $za = \gamma(a)z$ for all $a \in A$ and zu = uz. Hence zR = Rz and R is not simple.

If such a u exists then it is a splitting element, z is a Casimir element and R is conformal; otherwise R is singular.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose there exists a γ -normal element $u \in A$ such that $v = u - \rho \alpha(u)$. $z := xy - u = \rho(yx - \alpha(u))$ is such that $zy = \rho yz$, $zx = \rho^{-1}xz$, $za = \gamma(a)z$ for all $a \in A$ and zu = uz. Hence zR = Rz and R is not simple. If such a u exists then it is a splitting element, z is a Casimir element and R is conformal; otherwise R is singular.

< □ > < □ > < 亘 > < 亘 > < 亘 > ○ < ♡ < ♡

Suppose there exists a γ -normal element $u \in A$ such that $v = u - \rho \alpha(u)$. $z := xy - u = \rho(yx - \alpha(u))$ is such that $zy = \rho yz$, $zx = \rho^{-1}xz$, $za = \gamma(a)z$ for all $a \in A$ and zu = uz. Hence zR = Rz and R is not simple. If such a u exists then it is a splitting element, z is a Casimir element and R is conformal; otherwise R is singular.

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Suppose there exists a γ -normal element $u \in A$ such that $v = u - \rho \alpha(u)$. $z := xy - u = \rho(yx - \alpha(u))$ is such that $zy = \rho yz$, $zx = \rho^{-1}xz$, $za = \gamma(a)z$ for all $a \in A$ and zu = uz. Hence zR = Rz and R is not simple. If such a u exists then it is a splitting element, z is a Casimir element and R is conformal; otherwise R is singular.

・ロト・(中下・(中下・(日下・))の(の)

For $m \ge 1$, $v^{(m)} := \sum_{l=0}^{m-1} \rho^l \alpha^l(v)$. In particular $v^{(1)} = v$. $v^{(0)} := 1$. Each $v^{(m)}$ is γ -normal. For $m \ge 1$,

$$xy^m - \rho^m y^m x = v^{(m)} y^{m-1}$$
 and
 $x^m y - \rho^m y x^m = x^{m-1} v^{(m)}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For
$$m \ge 1$$
, $v^{(m)} := \sum_{l=0}^{m-1} \rho^l \alpha^l(v)$.
In particular $v^{(1)} = v$. $v^{(0)} := 1$.
Each $v^{(m)}$ is γ -normal.
For $m \ge 1$,

$$xy^m - \rho^m y^m x = v^{(m)} y^{m-1}$$
 and
 $x^m y - \rho^m y x^m = x^{m-1} v^{(m)}.$

For
$$m \ge 1$$
, $v^{(m)} := \sum_{l=0}^{m-1} \rho^l \alpha^l(v)$.
In particular $v^{(1)} = v$. $v^{(0)} := 1$.
Each $v^{(m)}$ is γ -normal.
For $m \ge 1$,

$$xy^m - \rho^m y^m x = v^{(m)} y^{m-1}$$
 and
 $x^m y - \rho^m y x^m = x^{m-1} v^{(m)}.$

For
$$m \ge 1$$
, $v^{(m)} := \sum_{l=0}^{m-1} \rho^l \alpha^l(v)$.
In particular $v^{(1)} = v$. $v^{(0)} := 1$.
Each $v^{(m)}$ is γ -normal.
For $m \ge 1$,

$$xy^m - \rho^m y^m x = v^{(m)} y^{m-1}$$
 and
 $x^m y - \rho^m y x^m = x^{m-1} v^{(m)}.$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- A is α -simple;
- *R* is singular;
- (a) for all $m \ge 1$, $v^{(m)}$ is a unit of A.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A is α -simple;
- *R* is singular;
- If or all $m \ge 1$, $v^{(m)}$ is a unit of A.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- A is α -simple;
- *R* is singular;
- for all $m \ge 1$, $v^{(m)}$ is a unit of A.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- A is α -simple;
- *R* is singular;
- (a) for all $m \ge 1$, $v^{(m)}$ is a unit of A.

• *A* a field extension of *k* e.g. $k = \mathbb{R}$, $A = \mathbb{C}$, $\alpha(z) = \overline{z}$.

- A = k[t], α(t) = t + 1, char k = 0.In this case a splitting element u always exists, of degree 1 + deg v if ρ = 1 and deg v if ρ ≠ 1.
- $A = k[t^{\pm 1}]$, $\alpha(t) = qt$, $q \in k^*$ not a root of unity.
- A = kG, G = ⟨t⟩ cyclic of order n, α(t) = εt, ε ∈ k a primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

- *A* a field extension of *k* e.g. $k = \mathbb{R}$, $A = \mathbb{C}$, $\alpha(z) = \overline{z}$.
- A = k[t], α(t) = t + 1, char k = 0. In this case a splitting element u always exists, of degree 1 + deg v if ρ = 1 and deg v if ρ ≠ 1.
- $A = k[t^{\pm 1}]$, $\alpha(t) = qt$, $q \in k^*$ not a root of unity.
- A = kG, G = ⟨t⟩ cyclic of order n, α(t) = εt, ε ∈ k a primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *A* a field extension of *k* e.g. $k = \mathbb{R}$, $A = \mathbb{C}$, $\alpha(z) = \overline{z}$.
- A = k[t], α(t) = t + 1, char k = 0. In this case a splitting element u always exists, of degree 1 + deg v if ρ = 1 and deg v if ρ ≠ 1.
- $A = k[t^{\pm 1}]$, $\alpha(t) = qt$, $q \in k^*$ not a root of unity.
- A = kG, G = ⟨t⟩ cyclic of order n, α(t) = εt, ε ∈ k a primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *A* a field extension of *k* e.g. $k = \mathbb{R}$, $A = \mathbb{C}$, $\alpha(z) = \overline{z}$.
- A = k[t], α(t) = t + 1, char k = 0. In this case a splitting element u always exists, of degree 1 + deg v if ρ = 1 and deg v if ρ ≠ 1.
- $A = k[t^{\pm 1}], \alpha(t) = qt, q \in k^*$ not a root of unity.
- A = kG, G = ⟨t⟩ cyclic of order n, α(t) = εt, ε ∈ k a primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

うして 山田 マイボット ボット シックション

- *A* a field extension of *k* e.g. $k = \mathbb{R}$, $A = \mathbb{C}$, $\alpha(z) = \overline{z}$.
- A = k[t], α(t) = t + 1, char k = 0.In this case a splitting element u always exists, of degree 1 + deg v if ρ = 1 and deg v if ρ ≠ 1.
- $A = k[t^{\pm 1}], \alpha(t) = qt, q \in k^*$ not a root of unity.
- A = kG, G = ⟨t⟩ cyclic of order n, α(t) = εt, ε ∈ k a primitive *n*th root of unity.
- A simple e.g. iterating the ambiskew construction.

うして 山田 マイボット ボット シックション

- *A* a field extension of *k* e.g. $k = \mathbb{R}$, $A = \mathbb{C}$, $\alpha(z) = \overline{z}$.
- A = k[t], α(t) = t + 1, char k = 0.In this case a splitting element u always exists, of degree 1 + deg v if ρ = 1 and deg v if ρ ≠ 1.
- $A = k[t^{\pm 1}], \alpha(t) = qt, q \in k^*$ not a root of unity.
- A = kG, G = ⟨t⟩ cyclic of order n, α(t) = εt, ε ∈ k a primitive *n*th root of unity.
- A simple e.g. iterating the ambiskew construction.

If char k = 0, $A_1(k)$ is, of course, simple: $v^{(m)} = m$, $u - \alpha(u) = 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$A_1^q(k)$ is not simple when $q \neq 1$: u = 1/(1-q), $u - q\alpha(u) = 1$.

If char
$$k = 0$$
, $A_1(k)$ is, of course, simple: $v^{(m)} = m$, $u - \alpha(u) = 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$$A_1^q(k)$$
 is not simple when $q \neq 1$: $u = 1/(1 - q)$,
 $u - q\alpha(u) = 1$.

Consider \mathbb{C} as an \mathbb{R} -algebra with $\alpha(z) = \overline{z}$ and $\gamma = id_{\mathbb{C}}$. Taking v = a + ib we get the \mathbb{R} -algebra R generated by *i*, *x* and *y* subject to the relations

$$i^2=-1$$
, $xi=-ix$, $yi=-iy$, $xy-
ho yx=a+ib$.

Consider \mathbb{C} as an \mathbb{R} -algebra with $\alpha(z) = \overline{z}$ and $\gamma = id_{\mathbb{C}}$. Taking v = a + ib we get the \mathbb{R} -algebra R generated by i, x and y subject to the relations

$$i^2=-1$$
, $xi=-ix$, $yi=-iy$, $xy-
ho yx=a+ib$.

Consider \mathbb{C} as an \mathbb{R} -algebra with $\alpha(z) = \overline{z}$ and $\gamma = id_{\mathbb{C}}$. Taking v = a + ib we get the \mathbb{R} -algebra R generated by *i*, *x* and *y* subject to the relations

$$i^2=-1$$
, $xi=-ix$, $yi=-iy$, $xy-
ho yx=a+ib$.

Consider \mathbb{C} as an \mathbb{R} -algebra with $\alpha(z) = \overline{z}$ and $\gamma = id_{\mathbb{C}}$. Taking v = a + ib we get the \mathbb{R} -algebra R generated by *i*, *x* and *y* subject to the relations

$$i^2 = -1$$
, $xi = -ix$, $yi = -iy$, $xy - \rho yx = a + ib$.

If $q \in k^*$ is not a root of unity and $0 \neq n \in \mathbb{Z}$ then the *k*-algebra generated by $t^{\pm 1}$, *x* and *y* subject to the relations

$$yt = qty,$$

$$xt = q^{-1}tx$$

$$xy - q^{-n}yx = t^{n}.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

is simple.

Let char k = 0, $n \ge 2$ and $\varepsilon \in k$ be a primitive *n*th root of unity.

R: k-algebra generated by t, x, y subject to

$$t^{n} = 1$$
, $yt = \varepsilon ty$, $xt = \varepsilon^{-1}tx$,
 $xy - \rho yx = c_{0} + c_{1}t + c_{2}t^{2} + \ldots + c_{n-1}t^{n-1}$.

R is generically simple. For example when n = 2, $\varepsilon = -1$ and $\rho = 1$ the relations become

$$t^2 = 1$$
, $yt = -ty$, $xt = -tx$,
 $xy - yx = c_0 + c_1 t$.

Here *R* is simple if and only if $c_1 \neq 0$ and $c_0 \neq \pm mc_1$ for all odd $m \ge 1$. You might recognise this as a symplectic reflection

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

algebra.

Let char k = 0, $n \ge 2$ and $\varepsilon \in k$ be a primitive *n*th root of unity.

R: k-algebra generated by t, x, y subject to

$$t^{n} = 1$$
, $yt = \varepsilon ty$, $xt = \varepsilon^{-1}tx$,
 $xy - \rho yx = c_{0} + c_{1}t + c_{2}t^{2} + \ldots + c_{n-1}t^{n-1}$.

R is generically simple. For example when n = 2, $\varepsilon = -1$ and $\rho = 1$ the relations become

$$t^2 = 1$$
, $yt = -ty$, $xt = -tx$,
 $xy - yx = c_0 + c_1 t$.

Here *R* is simple if and only if $c_1 \neq 0$ and $c_0 \neq \pm mc_1$ for all odd $m \ge 1$. You might recognise this as a symplectic reflection

・ロト・日本・日本・日本・日本・日本

Let char k = 0, $n \ge 2$ and $\varepsilon \in k$ be a primitive *n*th root of unity.

R: k-algebra generated by t, x, y subject to

$$t^n = 1$$
, $yt = \varepsilon ty$, $xt = \varepsilon^{-1}tx$,
 $xy - \rho yx = c_0 + c_1t + c_2t^2 + \ldots + c_{n-1}t^{n-1}$.

R is generically simple. For example when n = 2, $\varepsilon = -1$ and $\rho = 1$ the relations become

$$t^2 = 1$$
, $yt = -ty$, $xt = -tx$,
 $xy - yx = c_0 + c_1 t$.

Here *R* is simple if and only if $c_1 \neq 0$ and $c_0 \neq \pm mc_1$ for all odd $m \geq 1$. You might recognise this as a symplectic reflection algebra.

Let char k = 0, $n \ge 2$ and $\varepsilon \in k$ be a primitive *n*th root of unity.

R: k-algebra generated by t, x, y subject to

$$t^{n} = 1$$
, $yt = \varepsilon ty$, $xt = \varepsilon^{-1}tx$,
 $xy - \rho yx = c_{0} + c_{1}t + c_{2}t^{2} + \ldots + c_{n-1}t^{n-1}$.

R is generically simple. For example when n = 2, $\varepsilon = -1$ and $\rho = 1$ the relations become

$$t^2 = 1$$
, $yt = -ty$, $xt = -tx$,
 $xy - yx = c_0 + c_1 t$.

Here *R* is simple if and only if $c_1 \neq 0$ and $c_0 \neq \pm mc_1$ for all odd $m \geq 1$. You might recognise this as a symplectic reflection algebra.

Let char k = 0, $n \ge 2$ and $\varepsilon \in k$ be a primitive *n*th root of unity.

R: k-algebra generated by t, x, y subject to

$$t^n = 1$$
, $yt = \varepsilon ty$, $xt = \varepsilon^{-1}tx$,
 $xy - \rho yx = c_0 + c_1t + c_2t^2 + \ldots + c_{n-1}t^{n-1}$.

R is generically simple. For example when n = 2, $\varepsilon = -1$ and $\rho = 1$ the relations become

$$t^2 = 1$$
, $yt = -ty$, $xt = -tx$,
 $xy - yx = c_0 + c_1 t$.

Here *R* is simple if and only if $c_1 \neq 0$ and $c_0 \neq \pm mc_1$ for all odd $m \ge 1$. You might recognise this as a symplectic reflection

algebra.

Simple higher quantized Weyl algebras

Suppose char k = 0 and let $\Lambda = (\lambda_{i,j})$ be $n \times n$ such that $\lambda_{j,i} = \lambda_{i,j}^{-1}$ for $1 \le i, j \le n$. The *k*-algebra generated by $x_1, y_1, \dots, x_n, y_n$ subject to the relations

$$y_j y_i = \lambda_{j,i} y_j y_j, \quad 1 \le i < j \le n;$$

$$y_j x_i = \lambda_{i,j} x_i y_j, \quad 1 \le i < j \le n;$$

$$x_j y_i = \lambda_{i,j} y_i x_j, \quad 1 \le i < j \le n;$$

$$x_j x_i = \lambda_{j,i} x_i x_j, \quad 1 \le i < j \le n;$$

$$i y_j - y_j x_j = 1, \quad 1 \le j \le n,$$

is simple. These are iterated ambiskew polynomial rings and special cases of a more general construction.

Simple higher quantized Weyl algebras

Suppose char k = 0 and let $\Lambda = (\lambda_{i,j})$ be $n \times n$ such that $\lambda_{j,i} = \lambda_{i,j}^{-1}$ for $1 \le i, j \le n$. The *k*-algebra generated by $x_1, y_1, \ldots, x_n, y_n$ subject to the relations

$$y_j y_i = \lambda_{j,i} y_i y_j, \quad 1 \le i < j \le n;$$

$$y_j x_i = \lambda_{i,j} x_i y_j, \quad 1 \le i < j \le n;$$

$$x_j y_i = \lambda_{i,j} y_i x_j, \quad 1 \le i < j \le n;$$

$$x_j x_i = \lambda_{j,i} x_i x_j, \quad 1 \le i < j \le n;$$

$$x_j y_j - y_j x_j = 1, \quad 1 \le j \le n,$$

is simple. These are iterated ambiskew polynomial rings and special cases of a more general construction.

Simple higher quantized Weyl algebras

Suppose char k = 0 and let $\Lambda = (\lambda_{i,j})$ be $n \times n$ such that $\lambda_{j,i} = \lambda_{i,j}^{-1}$ for $1 \le i, j \le n$. The *k*-algebra generated by $x_1, y_1, \ldots, x_n, y_n$ subject to the relations

$$y_j y_i = \lambda_{j,i} y_j y_j, \quad 1 \le i < j \le n;$$

$$y_j x_i = \lambda_{i,j} x_i y_j, \quad 1 \le i < j \le n;$$

$$x_j y_i = \lambda_{i,j} y_i x_j, \quad 1 \le i < j \le n;$$

$$x_j x_i = \lambda_{j,i} x_i x_j, \quad 1 \le i < j \le n;$$

$$x_j y_j - y_j x_j = 1, \quad 1 \le j \le n,$$

is simple. These are iterated ambiskew polynomial rings and special cases of a more general construction.

Suppose that *R* is conformal so that the Casimir element *z* is a barrier to simplicity. It can be removed by inverting z = xy - u to form $S := R_{\mathcal{Z}} := R_{\{z^i\}}$ or factoring out *z* to form T := R/zR. There are simplicity criteria for both *S* and *T*.

Theorem: The ring $S = R_{\mathcal{Z}}$ is simple if and only if the following hold:

• A is $\{\alpha, \gamma\}$ -simple;

2 there do not exist $c \in A$ and $m, j \in \mathbb{Z}$, with m and j not both 0, such that $\gamma(c) = \rho^m c, \alpha(c) = \rho^j c$ and $c\gamma^j(a) = \alpha^m(a)c \ \forall a \in A;$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

③ for all $m \ge 1$, there exists *n* such that $u^n \in v^{(m)}A$.

Theorem: The ring $S = R_{\mathcal{Z}}$ is simple if and only if the following hold:

- A is $\{\alpha, \gamma\}$ -simple;
- 2 there do not exist c ∈ A and m, j ∈ Z, with m and j not both 0, such that γ(c) = ρ^mc,α(c) = ρ^jc and cγ^j(a) = α^m(a)c ∀a ∈ A;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

③ for all $m \ge 1$, there exists *n* such that $u^n \in v^{(m)}A$.

Theorem: The ring $S = R_{\mathcal{Z}}$ is simple if and only if the following hold:

- A is $\{\alpha, \gamma\}$ -simple;
- e there do not exist *c* ∈ *A* and *m*, *j* ∈ Z, with *m* and *j* not both 0, such that $\gamma(c) = \rho^m c, \alpha(c) = \rho^j c$ and $c\gamma^j(a) = \alpha^m(a)c \forall a \in A$;

うして 山田 マイボット ボット シックション

③ for all $m \ge 1$, there exists *n* such that $u^n \in v^{(m)}A$.

Theorem: The ring $S = R_z$ is simple if and only if the following hold:

- A is $\{\alpha, \gamma\}$ -simple;
- 2 there do not exist *c* ∈ *A* and *m*, *j* ∈ Z, with *m* and *j* not both 0, such that $\gamma(c) = \rho^m c, \alpha(c) = \rho^j c$ and $c\gamma^j(a) = \alpha^m(a)c \forall a \in A$;

うして 山田 マイボット ボット シックション

● for all $m \ge 1$, there exists *n* such that $u^n \in v^{(m)}A$.

Examples with *S* simple:

- the quantum torus k[x^{±1}, y^{±1} : xy = qyx], q is not a root of unity.
- A^q₁ when xy yx is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;
- A = k[h], $\alpha(h) = h + 1$, $\gamma = id$, ρ not a root of unity,
- A = k[h^{±1}], α(h) = qh, γ = id, v = h, S is simple if and only if the subgroup of k^{*} generated by q and ρ is free abelian of rank 2.
- the quantum torus k[x^{±1}, y^{±1} : xy = qyx], q is not a root of unity.
- A^q₁ when xy yx is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;
- A = k[h], $\alpha(h) = h + 1$, $\gamma = id$, ρ not a root of unity,
- A = k[h^{±1}], α(h) = qh, γ = id, v = h, S is simple if and only if the subgroup of k^{*} generated by q and ρ is free abelian of rank 2.

- the quantum torus k[x^{±1}, y^{±1} : xy = qyx], q is not a root of unity.
- A^q₁ when xy yx is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;
- A = k[h], $\alpha(h) = h + 1$, $\gamma = id$, ρ not a root of unity,
- A = k[h^{±1}], α(h) = qh, γ = id, v = h, S is simple if and only if the subgroup of k^{*} generated by q and ρ is free abelian of rank 2.

- the quantum torus k[x^{±1}, y^{±1} : xy = qyx], q is not a root of unity.
- A^q₁ when xy yx is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;
- A = k[h], $\alpha(h) = h + 1$, $\gamma = id$, ρ not a root of unity,
- A = k[h^{±1}], α(h) = qh, γ = id, v = h, S is simple if and only if the subgroup of k^{*} generated by q and ρ is free abelian of rank 2.

- the quantum torus k[x^{±1}, y^{±1} : xy = qyx], q is not a root of unity.
- A^q₁ when xy yx is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;
- A = k[h], $\alpha(h) = h + 1$, $\gamma = id$, ρ not a root of unity,
- A = k[h^{±1}], α(h) = qh, γ = id, v = h, S is simple if and only if the subgroup of k^{*} generated by q and ρ is free abelian of rank 2.

Abusing notation, in T := R/zR,

$$ya = \alpha(a)y$$
 for all $a \in A$,
 $xa = \beta(a)x$ for all $a \in A$ and
 $xy = u$; $yx = \alpha(u)$.

This is a (generalized) generalized Weyl algebra in the sense of Bavula.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- A is α -simple;
- (2) α^m is outer for all $m \ge 1$;
- *u* is regular;
- $uA + \alpha^m(u)A = A$ for all $m \ge 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- A is α -simple;
- 2 α^m is outer for all $m \ge 1$;
- *u* is regular;
- $uA + \alpha^m(u)A = A$ for all $m \ge 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- A is α -simple;
- 2 α^m is outer for all $m \ge 1$;
- u is regular;
- $uA + \alpha^m(u)A = A$ for all $m \ge 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- A is α -simple;
- 2 α^m is outer for all $m \ge 1$;
- u is regular;
- $uA + \alpha^m(u)A = A$ for all $m \ge 1$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~