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skew polynomial rings

base ring A
A[x ;α, δ]
α is a ring endomorphism of A.
δ is a (left) α-derivation of A:

δ(ab) = α(a)δ(b) + δ(a)b.

As a group under +, A[x ;α, δ] = A[x ] but

xr = α(r)x + δ(r).

Special cases: α = idA (A[x ; δ]); δ = 0 (A[x ;α]).
From now on k denotes a field.
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Simple A[x ; δ]

A is δ-simple if there is no non-zero proper ideal I of A
with δ(I) ⊆ I.
δ is inner if ∃a ∈ A such that δ(r) = ar − ra ∀ r ∈ A, outer
otherwise.
Theorem: Let A be a k -algebra, where char k = 0. A[x ; δ]
is simple iff A is δ-simple and δ is outer.
Examples

A = k [y ], δ = d/dy , xy − yx = 1 (the first Weyl
algebra).
A = k [y , z]: there are examples of δ with A δ-simple,
due to many people, most notably Bergman and
Coutinho.

There exists a more complex simplicity criterion in
characteristic p.
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Discussion point

What is the easiest example of a simple skew polynomial
ring of the form R[x ;α, δ] with α outer?
There is an example due to Cozzens, reproduced over 5
pages of the 1975 book by Faith and Cozzens, of a simple
ring D[x ;α, δ] where D is a division ring and α is injective
but not surjective.
There are known simplicity results due to Lam, Leroy ±
Jain when R is a division ring and to Lam, Leroy, Leung,
Matczuk when R is simple.
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ambiskew polynomial rings

The data: a k -algebra A,
two commuting k -automorphisms of A, α and γ, β := α−1γ,
v ∈ A such that va = γ(a)v ∀ a ∈ A and γ(v) = v (v is
γ-normal),
ρ ∈ k\{0}.
Form A[y ;α] and set β(y) = ρy so that β ∈ Autk (A[y ;α]).
The ambiskew polynomial ring R = R(A, α, v , ρ) is the
iterated skew polynomial ring A[y ;α][x ; β, δ], where
δ(A) = 0 and δ(y) = v .

ya = α(a)y for all a ∈ A,
xa = β(a)x for all a ∈ A and
xy = ρyx + v .
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Examples

A = k , α = γ = id
A1(k), the first Weyl algebra: xy − yx = 1, ρ = v = 1.
the quantum plane: xy = qyx , ρ = q, v = 0.
the quantised Weyl algebra Aq

1(k): xy − qyx = 1,
ρ = q, v = 1.

A = k [h]: U(sl2),particular examples due to Witten,
Woronowicz, Podleś, Kirkman/Small, general classes due
to Smith, Rueda, Le Bruyn, Benkart/Roby (down-up
algebras), Cassidy/Shelton (generalized down-up
algebras).
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Examples

A = k [K ±1]: Uq(sl2)

A = k [b, c]: Oq(M2(k))

very recent and with combinatorial motivation
A = k [h,K ±1]: augmented down-up algebras
(Terwilliger/Worawannatoi, combinatorial motivation)

By iteration, higher quantized Weyl algebras.
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Casimir elements

Suppose there exists a γ-normal element u ∈ A such that
v = u − ρα(u).
z := xy − u = ρ(yx − α(u)) is such that zy = ρyz,
zx = ρ−1xz, za = γ(a)z for all a ∈ A and zu = uz.
Hence zR = Rz and R is not simple.
If such a u exists then it is a splitting element, z is a
Casimir element and R is conformal; otherwise R is
singular.
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The elements v (m)

For m ≥ 1, v (m) :=
∑m−1

l=0 ρ
lαl(v).

In particular v (1) = v . v (0) := 1.
Each v (m) is γ-normal.
For m ≥ 1,

xym
− ρmymx = v (m)ym−1 and

xmy − ρmyxm = xm−1v (m).

In the conformal case, v (m) = u − ρmαm(u).
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Simplicity criterion for R

Theorem: Suppose that char k = 0. The ring R is simple if
and only if

1 A is α-simple;
2 R is singular;
3 for all m ≥ 1, v (m) is a unit of A.

There is a more complex simplicity criterion in
characteristic p.
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Examples of α-simplicity

A a field extension of k e.g. k = R, A = C, α(z) = z.
A = k [t ], α(t) = t + 1, char k = 0.In this case a
splitting element u always exists, of degree 1 + deg v
if ρ = 1 and deg v if ρ , 1.
A = k [t±1], α(t) = qt , q ∈ k ∗ not a root of unity.
A = kG, G = 〈t〉 cyclic of order n, α(t) = εt , ε ∈ k a
primitive nth root of unity.
A simple e.g. iterating the ambiskew construction.
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Examples

If char k = 0, A1(k) is, of course, simple: v (m) = m,
u − α(u) = 0.

Aq
1(k) is not simple when q , 1: u = 1/(1 − q),

u − qα(u) = 1.
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Examples

Consider C as an R-algebra with α(z) = z and γ = idC.
Taking v = a + ib we get the R-algebra R generated by
i , x and y subject to the relations

i2 = −1, xi = −ix , yi = −iy , xy − ρyx = a + ib.

R is singular if and only if either ρ = 1 and a , 0 or
ρ = −1 and b , 0.
By the condition on v (m), R is simple if and only if either
ρ = 1 and a , 0 or ρ = −1 and b , 0.
If v = 1 = ρ, where xy − yx = 1, then v (m) = m and if
v = i and ρ = −1, where xy + yx = i , then v (m) = im.
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Example with A = k [t±1]

If q ∈ k ∗ is not a root of unity and 0 , n ∈ Z then the
k -algebra generated by t±1, x and y subject to the
relations

yt = qty ,
xt = q−1tx

xy − q−nyx = tn.

is simple.



Example with A = kG, G finite cyclic
Let char k = 0, n ≥ 2 and ε ∈ k be a primitive nth root of
unity.
R: k -algebra generated by t , x , y subject to

tn = 1, yt = εty , xt = ε−1tx ,
xy − ρyx = c0 + c1t + c2t2 + . . .+ cn−1tn−1.

R is generically simple. For example when n = 2, ε = −1
and ρ = 1 the relations become

t2 = 1, yt = −ty , xt = −tx ,
xy − yx = c0 + c1t .

Here R is simple if and only if c1 , 0 and c0 , ±mc1 for all
odd m ≥ 1.
You might recognise this as a symplectic reflection
algebra.
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Simple higher quantized Weyl algebras

Suppose char k = 0 and let Λ = (λi ,j) be n × n such that
λj ,i = λ−1

i ,j for 1 ≤ i , j ≤ n.The k -algebra generated by
x1, y1, . . . , xn, yn subject to the relations

yjyi = λj ,iyiyj , 1 ≤ i < j ≤ n;

yjxi = λi ,jxiyj , 1 ≤ i < j ≤ n;

xjyi = λi ,jyixj , 1 ≤ i < j ≤ n;

xjxi = λj ,ixixj , 1 ≤ i < j ≤ n;

xjyj − yjxj = 1, 1 ≤ j ≤ n,

is simple. These are iterated ambiskew polynomial rings
and special cases of a more general construction.
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Removing the Casimir barrier

Suppose that R is conformal so that the Casimir element
z is a barrier to simplicity. It can be removed by inverting
z = xy − u to form S := RZ := R{z i } or factoring out z to
form T := R/zR. There are simplicity criteria for both S
and T .



Simplicity criterion for S

Theorem: The ring S = RZ is simple if and only if the
following hold:

1 A is {α, γ}-simple;
2 there do not exist c ∈ A and m, j ∈ Z, with m and j not

both 0, such that γ(c) = ρmc,α(c) = ρjc and
cγj(a) = αm(a)c ∀a ∈ A;

3 for all m ≥ 1, there exists n such that un
∈ v (m)A.
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Examples

Examples with S simple:

the quantum torus k [x±1, y±1 : xy = qyx ], q is not a
root of unity.
Aq

1 when xy − yx is inverted and q is not a root of
unity;
localizations of non-simple higher quantized Weyl
algebras;
A = k [h], α(h) = h + 1, γ = id, ρ not a root of unity,
A = k [h±1], α(h) = qh, γ = id, v = h, S is simple if
and only if the subgroup of k ∗ generated by q and ρ is
free abelian of rank 2.
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Factor out z

Abusing notation, in T := R/zR,

ya = α(a)y for all a ∈ A,
xa = β(a)x for all a ∈ A and

xy = u ; yx = α(u).

This is a (generalized) generalized Weyl algebra in the
sense of Bavula.



Simplicity criterion for T

Theorem: T is simple if and only if
1 A is α-simple;
2 αm is outer for all m ≥ 1;
3 u is regular;
4 uA + αm(u)A = A for all m ≥ 1.
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