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skew polynomial rings

base ring A

Alx; a, 0]

a is a ring endomorphism of A.
0 is a (left) a-derivation of A:

o(ab) = a(a)o(b) + o(a)b.
As a group under +, A[x; a, 6] = A[x] but
xr = a(r)x + o(r).

Special cases: a = ida (A[x;9]); 6 = 0 (A[x; a]).
From now on k denotes a field.



Ais o-simple if there is no non-zero proper ideal / of A
with 6(/) € 1.

DA



Ais o-simple if there is no non-zero proper ideal / of A
with 6(/) € 1.

oisinnerif dae Asuchthat 6(r) = ar—raV r € A, outer
otherwise.

DA



Simple A[x; 0]

Ais o-simple if there is no non-zero proper ideal / of A
with 6(/) € 1.

disinnerif dJae Asuchthat 6(r) = ar—raV r € A, outer
otherwise.

Theorem: Let A be a k-algebra, where char k = 0. A[x; J]
is simple iff Ais 6-simple and 6 is outer.



Simple A[x; 0]

Ais o-simple if there is no non-zero proper ideal / of A
with 6(/) € 1.

disinnerif dJae Asuchthat 6(r) = ar—raV r € A, outer
otherwise.

Theorem: Let A be a k-algebra, where char k = 0. A[x; J]
is simple iff Ais 6-simple and 6 is outer.

Examples

@ A= K[y], 6 =d/dy, xy — yx =1 (the first Weyl
algebra).



Simple A[x; 0]

Ais o-simple if there is no non-zero proper ideal / of A
with 6(/) € 1.

disinnerif dJae Asuchthat 6(r) = ar—raV r € A, outer
otherwise.

Theorem: Let A be a k-algebra, where char k = 0. A[x; J]
is simple iff Ais 6-simple and 6 is outer.

Examples

@ A= K[y], 6 =d/dy, xy — yx =1 (the first Weyl
algebra).
@ A = K|y, z]: there are examples of 6 with A 6-simple,

due to many people, most notably Bergman and
Coutinho.



Simple A[x; 0]

Ais o-simple if there is no non-zero proper ideal / of A
with 6(/) € 1.

disinnerif dJae Asuchthat 6(r) = ar—raV r € A, outer
otherwise.

Theorem: Let A be a k-algebra, where char k = 0. A[x; J]
is simple iff Ais 6-simple and 6 is outer.

Examples

@ A= K[y], 6 =d/dy, xy — yx =1 (the first Weyl
algebra).
@ A = K|y, z]: there are examples of 6 with A 6-simple,

due to many people, most notably Bergman and
Coutinho.

There exists a more complex simplicity criterion in
characteristic p.
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Discussion point

What is the easiest example of a simple skew polynomial
ring of the form R|x; a, 0] with a outer?

There is an example due to Cozzens, reproduced over 5
pages of the 1975 book by Faith and Cozzens, of a simple
ring D[x; a, 6] where D is a division ring and « is injective
but not surjective.

There are known simplicity results due to Lam, Leroy +
Jain when R is a division ring and to Lam, Leroy, Leung,
Matczuk when R is simple.
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ambiskew polynomial rings

The data: a k-algebra A,

two commuting k-automorphisms of A, a and y, B := a™'y,
ve Asuchthatva=y(a)vVaeAand y(v)=v (vis
y-normal),

p € k\{0}.

Form Aly; a] and set f(y) = py so that p € Autx(Aly; a]).
The ambiskew polynomial ring R = R(A, a, v, p) is the
iterated skew polynomial ring Aly; a|[x; B, 6], where

0(A) =0and o(y) = v.

ya = a(a)y forallae A,
xa = p(a)x forallae Aand
Xy = pyx+v.
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Examples

A=k a=y=id
@ Ai(k), the first Weyl algebra: xy —yx =1, p=v =1.
@ the quantum plane: xy = qyx,p=q,v =0.
@ the quantised Weyl algebra A7(k): xy — qyx =1,
p=q,v=1.
A = Kk[h]: U(sk),particular examples due to Witten,
Woronowicz, Podles$, Kirkman/Small, general classes due
to Smith, Rueda, Le Bruyn, Benkart/Roby (down-up

algebras), Cassidy/Shelton (generalized down-up
algebras).



A = K[K*']: Uy(sh)
A = Kb, c]: Og(Ma(k))

very recent and with combinatorial motivation
A = k[h, K*']: augmented down-up algebras
(Terwilliger/Worawannatoi, combinatorial motivation)

By iteration, higher quantized Weyl algebras.
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Examples

A = K[K*']: Uy(sh)
A= Kb, c]: Og(M:(k))

very recent and with combinatorial motivation
A = k[h, K*']: augmented down-up algebras
(Terwilliger/Worawannatoi, combinatorial motivation)

By iteration, higher quantized Weyl algebras.
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Casimir elements

Suppose there exists a y-normal element u € A such that
vV =u-pa(u).

z:=xy —u=p(yx —a(u)) is such that zy = pyz,

zx = p~'xz, za=y(a)zforallae Aand zu = uz.

Hence zR = Rz and R is not simple.

If such a u exists then it is a splitting element, z is a
Casimir element and R is conformal; otherwise R is
singular.
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Form=>1, vim .= ¥ olal(v).
In particular v(") = v, v(0 =1,
Each v(™ is y-normal.
Form>1,

Xym _ pmme V(m)ym—1 and
me_ pmme — Xm—1 V(m)-

u]

8]
it
it
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The elements v(™

Form>1, vim .= Y™ 1 olal(v).
In particular v(") = v, v(© =1,
Each v(™ is y-normal.
Form>1,
Xym _ pmme _ V(m)ym—1 and

me_ pmme — Xm—1 V(m).

In the conformal case, v(™ = u - p™a™(u).



Theorem: Suppose that char k = 0. The ring R is simple if
and only if

@ Ais a-simple;
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Theorem: Suppose that char k = 0. The ring R is simple if
and only if

@ Ais a-simple;
@ Riis singular;
@ forall m>1, vi™ is a unit of A.

There is a more complex simplicity criterion in
characteristic p.
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@ A=K[t],a(t)=t+1,chark = 0.
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Examples of a-simplicity

@ Aafield extensionof ke.g. k=R, A=C, a(z) = z.

@ A= K[t], a(t) = t + 1, char k = 0.In this case a
splitting element u always exists, of degree 1 + degv
if p=1anddegvifp#1.

@ A= K[t"], a(t) = gt, g € k* not a root of unity.

@ A= kG, G=(t)cyclicof order n, a(t) = et,c e k a
primitive nth root of unity.

@ Asimple e.g. iterating the ambiskew construction.



If char k = 0, A¢(k) is, of course, simple: v(™ = m
u-a(u)=0.
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If char k = 0, A¢(k) is, of course, simple: v(™ = m
u-a(u)=0.

Al(k) is not simple when g # 1: u=1/(1 - q),
u-qa(u)=1.

DA



Examples

Consider C as an R-algebra with a(z) = z and y = idc.
Taking v = a + ib we get the R-algebra R generated by
i, x and y subject to the relations

P=-1, xi=-ix, yi=-ly, xy-pyx=a-+ib.
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Examples

Consider C as an R-algebra with a(z) = z and y = idc.
Taking v = a + ib we get the R-algebra R generated by
i, x and y subject to the relations

P=-1, xi=-ix, yi=-ly, xy-pyx=a-+ib.

R is singular if and only if either p =1 and a # 0 or
p=-1and b#0.

By the condition on v(™, R is simple if and only if either
p=1anda#0orp=-1andb#0.

If v=1=p, where xy — yx = 1, then v{™ = m and if

v =iandp = -1, where xy + yx = i, then v{™ = jm,



Example with A = k[t*']

If g € k* is not a root of unity and 0 # n € Z then the
k-algebra generated by t*', x and y subject to the
relations

yt = qty,
xt g tx

xy—q"yx = t".

is simple.



unity.

Letchark =0, n > 2 and ¢ € k be a primitive nth root of
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Example with A = kG, G finite cyclic

Let chark =0, n> 2 and ¢ € k be a primitive nth root of
unity.
R: k-algebra generated by t, x, y subject to
t"=1, yt = ety, xt=etx,
Xy —pyx = Co+ cit+ C2t2 + ...+ Cn_1tn_1.
R is generically simple. For example when n =2, ¢ = —1
and p = 1 the relations become
2=1, yt = —ty, xt=-Ix,
Xy —yx = Cp+ Cit.

Here R is simple if and only if ¢; # 0 and ¢y # +mc; for all
odd m> 1.

You might recognise this as a symplectic reflection
algebra.
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Simple higher quantized Weyl algebras

Suppose char k = 0 and let A = (A;;) be nx n such that
Aji = )\;j? for 1 <i,j < n.The k-algebra generated by
X1, Y1,---,Xn, ¥n SUbject to the relations

Yiyi = Apyiy;, 1<i<jsn

yixi = Aijxiy;, 1<i<j<n

Xyi = Aijyix, 1<i<j<nm

XX = Apxix, 1<i<j<n
Xyi—yxi = 1, 1<j<n,

is simple. These are iterated ambiskew polynomial rings
and special cases of a more general construction.



Removing the Casimir barrier

Suppose that R is conformal so that the Casimir element
Z is a barrier to simplicity. It can be removed by inverting
z = xy —utoform S := Rz := Ry or factoring out z to
form T := R/zR. There are simplicity criteria for both S
and T.



Theorem: The ring S = Rz is simple if and only if the
following hold:

Q@ Ais {a,y}-simple;
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@ there do not exist c € Aand m,j € Z, with m and j not
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Theorem: The ring S = Rz is simple if and only if the
following hold:
Q@ Ais {a,y}-simple;
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Simplicity criterion for S

Theorem: The ring S = Rz is simple if and only if the
following hold:

Q@ Ais {a,y}-simple;

@ there do not exist c € Aand m, j € Z, with m and j not
both 0, such that y(c) = p™c,a(c) = p/c and
cyl(a) = a™(a)c Vae A;

© for all m> 1, there exists n such that u” € v(MA,



Examples with S simple:

@ the quantum torus k[x*', y*' : xy = qyx], g is not a
root of unity.
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Examples

Examples with S simple:

@ the quantum torus k[x*', y*' : xy = qyx], g is not a
root of unity.

@ A7 when xy — yx is inverted and q is not a root of
unity;

@ localizations of non-simple higher quantized Weyl
algebras;

@ A= k[h], a(h) = h+ 1,y =id, p not a root of unity,

@ A= k[h*'], a(h) = gh, y =id, v = h, Sis simple if
and only if the subgroup of k* generated by g and p is
free abelian of rank 2.



Factor out z

Abusing notation, in T := R/zR,

ya = a(a)y forallac A,
xa = p(a)x forallae Aand
xy=u ; yx=a(u).

This is a (generalized) generalized Weyl algebra in the
sense of Bavula.
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Theorem: T is simple if and only if
@ Ais a-simple;

Q «"isouterforall m>1;
@ uisregular;
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Simplicity criterion for T

Theorem: T is simple if and only if
@ Ais a-simple;
@ o™ isouter forall m> 1;
© uisregular;
Q vA+am(u)A=Aforallm>1.



