Simple ambiskew polynomial rings

David Jordan

School of Mathematics and Statistics, University of Sheffield

David A. Jordan and Imogen E. Wells, Journal of Algebra, Volume 382, (2013) 46-70

skew polynomial rings

base ring A
$A[x ; \alpha, \delta]$
α is a ring endomorphism of A.
δ is a (left) α-derivation of A :

$$
\delta(a b)=\alpha(a) \delta(b)+\delta(a) b
$$

As a group under,$+ A[x ; \alpha, \delta]=A[x]$ but

$$
x r=\alpha(r) x+\delta(r)
$$

Special cases: $\alpha=\operatorname{id}_{A}(A[x ; \delta]) ; \delta=0(A[x ; \alpha])$.
From now on k denotes a field.

skew polynomial rings

base ring A
$A[x ; \alpha, \delta]$
α is a ring endomorphism of A.
δ is a (left) α-derivation of A :

$$
\delta(a b)=\alpha(a) \delta(b)+\delta(a) b
$$

As a group under,$+ A[x ; \alpha, \delta]=A[x]$ but

$$
x r=\alpha(r) x+\delta(r)
$$

Special cases: $\alpha=\operatorname{id}_{A}(A[x ; \delta]) ; \delta=0(A[x ; \alpha])$.
From now on k denotes a field.

skew polynomial rings

base ring A
$A[x ; \alpha, \delta]$
α is a ring endomorphism of A.
δ is a (left) α-derivation of A :

$$
\delta(a b)=\alpha(a) \delta(b)+\delta(a) b
$$

As a group under,$+ A[x ; \alpha, \delta]=A[x]$ but

$$
x r=\alpha(r) x+\delta(r)
$$

Special cases: $\alpha=\operatorname{id}_{A}(A[x ; \delta])$;
From now on k denotes a field.

skew polynomial rings

base ring A
$A[x ; \alpha, \delta]$
α is a ring endomorphism of A.
δ is a (left) α-derivation of A :

$$
\delta(a b)=\alpha(a) \delta(b)+\delta(a) b
$$

As a group under,$+ A[x ; \alpha, \delta]=A[x]$ but

$$
x r=\alpha(r) x+\delta(r)
$$

Special cases: $\alpha=\operatorname{id}_{A}(A[x ; \delta]) ; \delta=0(A[x ; \alpha])$.
From now on k denotes a field.

skew polynomial rings

base ring A
$A[x ; \alpha, \delta]$
α is a ring endomorphism of A.
δ is a (left) α-derivation of A :

$$
\delta(a b)=\alpha(a) \delta(b)+\delta(a) b
$$

As a group under,$+ A[x ; \alpha, \delta]=A[x]$ but

$$
x r=\alpha(r) x+\delta(r)
$$

Special cases: $\alpha=\operatorname{id}_{A}(A[x ; \delta]) ; \delta=0(A[x ; \alpha])$.
From now on k denotes a field.

Simple $A[x ; \delta]$

A is δ-simple if there is no non-zero proper ideal I of A with $\delta(I) \subseteq I$.
δ is inner if $\exists a \in A$ such that $\delta(r)=a r-r a \forall r \in A$, outer otherwise.
Theorem: Let A be a k-algebra, where char $k=0 . A[x ; \delta]$ is simple iff A is δ-simple and δ is outer.
Examples

- $A=k[y], \delta=d / d y, x y-y x=1$ (the first Weyl algebra).
- $A=k[y, z]$: there are examples of δ with $A \delta$-simple, due to many people, most notably Bergman and Coutinho.

There exists a more complex simplicity criterion in characteristic p.

Simple $A[x ; \delta]$

A is δ-simple if there is no non-zero proper ideal I of A with $\delta(I) \subseteq I$.
δ is inner if $\exists a \in A$ such that $\delta(r)=a r-r a \forall r \in A$, outer otherwise.
Theorem: Let A be a k-algebra, where char $k=0 . A[x ; \delta]$ is simple iff A is δ-simple and δ is outer.
Examples

- $A=k[y], \delta=d / d y, x y-y x=1$ (the first Weyl
algebra).
- $A=k[y, z]$: there are examples of δ with $A \delta$-simple, due to many people, most notably Bergman and Coutinho.
There exists a more complex simplicity criterion in characteristic p.

Simple $A[x ; \delta]$

A is δ-simple if there is no non-zero proper ideal $/$ of A with $\delta(I) \subseteq I$.
δ is inner if $\exists a \in A$ such that $\delta(r)=a r-r a \forall r \in A$, outer otherwise.
Theorem: Let A be a k-algebra, where char $k=0 . A[x ; \delta]$ is simple iff A is δ-simple and δ is outer.

- $A=k[y], \delta=d / d y, x y-y x=1$ (the first Weyl algebra).
- $A=k[y, z]$: there are examples of δ with $A \delta$-simple, due to many people, most notably Bergman and

There exists a more complex simplicity criterion in characteristic p.

Simple $A[x ; \delta]$

A is δ-simple if there is no non-zero proper ideal $/$ of A with $\delta(I) \subseteq I$.
δ is inner if $\exists a \in A$ such that $\delta(r)=a r-r a \forall r \in A$, outer otherwise.
Theorem: Let A be a k-algebra, where char $k=0 . A[x ; \delta]$ is simple iff A is δ-simple and δ is outer.
Examples

- $A=k[y], \delta=d / d y, x y-y x=1$ (the first Weyl algebra).
- $A=k[y, z]$: there are examples of δ with $A \delta$-simple, due to many people, most notably Bergman and

There exists a more complex simplicity criterion in characteristic p.

Simple $A[x ; \delta]$

A is δ-simple if there is no non-zero proper ideal $/$ of A with $\delta(I) \subseteq I$.
δ is inner if $\exists a \in A$ such that $\delta(r)=a r-r a \forall r \in A$, outer otherwise.
Theorem: Let A be a k-algebra, where char $k=0 . A[x ; \delta]$ is simple iff A is δ-simple and δ is outer.
Examples

- $A=k[y], \delta=d / d y, x y-y x=1$ (the first Weyl algebra).
- $A=k[y, z]$: there are examples of δ with $A \delta$-simple, due to many people, most notably Bergman and Coutinho.
There exists a more complex simplicity criterion in characteristic p.

Simple $A[x ; \delta]$

A is δ-simple if there is no non-zero proper ideal $/$ of A with $\delta(I) \subseteq I$.
δ is inner if $\exists a \in A$ such that $\delta(r)=a r-r a \forall r \in A$, outer otherwise.
Theorem: Let A be a k-algebra, where char $k=0 . A[x ; \delta]$ is simple iff A is δ-simple and δ is outer.
Examples

- $A=k[y], \delta=d / d y, x y-y x=1$ (the first Weyl algebra).
- $A=k[y, z]$: there are examples of δ with $A \delta$-simple, due to many people, most notably Bergman and Coutinho.
There exists a more complex simplicity criterion in characteristic p.

Discussion point

What is the easiest example of a simple skew polynomial ring of the form $R[x ; \alpha, \delta]$ with α outer?
There is an example due to Cozzens, reproduced over 5 pages of the 1975 book by Faith and Cozzens, of a simple ring $D[x ; \alpha, \delta]$ where D is a division ring and α is injective but not surjective.
There are known simplicity results due to Lam, Leroy \pm Jain when R is a division ring and to Lam, Leroy, Leung, Matczuk when R is simple.

Discussion point

What is the easiest example of a simple skew polynomial ring of the form $R[x ; \alpha, \delta]$ with α outer?
There is an example due to Cozzens, reproduced over 5 pages of the 1975 book by Faith and Cozzens, of a simple ring $D[x ; \alpha, \delta]$ where D is a division ring and α is injective but not surjective.
There are known simplicity results due to Lam, Leroy \pm
Jain when R is a division ring and to Lam, Leroy, Leung,
Matczuk when R is simple.

Discussion point

What is the easiest example of a simple skew polynomial ring of the form $R[x ; \alpha, \delta]$ with α outer?
There is an example due to Cozzens, reproduced over 5 pages of the 1975 book by Faith and Cozzens, of a simple ring $D[x ; \alpha, \delta]$ where D is a division ring and α is injective but not surjective.
There are known simplicity results due to Lam, Leroy \pm Jain when R is a division ring and to Lam, Leroy, Leung, Matczuk when R is simple.

ambiskew polynomial rings

The data: a k-algebra A,
two commuting k-automorphisms of A, α and $\gamma, \beta:=\alpha^{-1} \gamma$, $v \in A$ such that $v a=\gamma(a) v \forall a \in A$ and $\gamma(v)=v(v$ is γ-normal),
$p \in k \backslash\{0\}$.
Form $A[y ; \alpha]$ and set $\beta(y)=\rho y$ so that $\beta \in \operatorname{Aut}_{k}(A[y ; \alpha])$. The ambiskew polynomial ring $R=R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y ; \alpha][x ; \beta, \delta]$, where $\delta(A)=0$ and $\delta(y)=v$.

$$
\begin{aligned}
& y a=\alpha(a) y \text { for all } a \in A, \\
& x a=\beta(a) x \text { for all } a \in A \text { and } \\
& x y=\rho y x+v .
\end{aligned}
$$

ambiskew polynomial rings

The data: a k-algebra A, two commuting k-automorphisms of A, α and $\gamma, \beta:=\alpha^{-1} \gamma$,
$v \in A$ such that $v a=\gamma(a) v \forall a \in A$ and $\gamma(v)=v(v$ is γ-normal),
$\rho \in k \backslash\{0\}$.
Form $A[y ; \alpha]$ and set $\beta(y)=\rho y$ so that $\beta \in \operatorname{Aut}_{k}(A[y ; \alpha])$. The ambiskew polynomial ring $R=R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y ; \alpha][x ; \beta, \delta]$, where $\delta(A)=0$ and $\delta(y)=v$.

$$
\begin{aligned}
& y a=\alpha(a) y \text { for all } a \in A \\
& x a=\beta(a) x \text { for all } a \in A \text { and } \\
& x y=\rho y x+v
\end{aligned}
$$

ambiskew polynomial rings

The data: a k-algebra A, two commuting k-automorphisms of A, α and $\gamma, \beta:=\alpha^{-1} \gamma$, $v \in A$ such that va $=\gamma(a) v \forall a \in A$ and $\gamma(v)=v(v$ is γ-normal),

ya $=\alpha(a) y$ for all $a \in A$,
$x a=\beta(a) x$ for all $a \in A$ and

ambiskew polynomial rings

The data: a k-algebra A, two commuting k-automorphisms of A, α and $\gamma, \beta:=\alpha^{-1} \gamma$, $v \in A$ such that va $=\gamma(a) v \forall a \in A$ and $\gamma(v)=v(v$ is γ-normal),
$\rho \in k \backslash\{0\}$.
Form $A[y ; \alpha]$ and $\operatorname{set} \beta(y)=\rho y$ so that $\beta \in \operatorname{Aut}_{k}(A[y ; \alpha])$.
The ambiskew polynomial ring $R=R(A, \alpha, v, \rho)$ is the
iterated skew polynomial ring $A[y ; \alpha][x ; \beta, \delta]$, where $\delta(A)=0$ and $\delta(y)=v$.

$$
\begin{aligned}
& y a=\alpha(a) y \text { for all } a \in A \\
& x a=\beta(a) x \text { for all } a \in A \text { and } \\
& x y=\rho y x+v
\end{aligned}
$$

ambiskew polynomial rings

The data: a k-algebra A, two commuting k-automorphisms of A, α and $\gamma, \beta:=\alpha^{-1} \gamma$, $v \in A$ such that va $=\gamma(a) v \forall a \in A$ and $\gamma(v)=v(v$ is γ-normal),
$\rho \in k \backslash\{0\}$.
Form $A[y ; \alpha]$ and set $\beta(y)=\rho y$ so that $\beta \in \operatorname{Aut}_{k}(A[y ; \alpha])$.
iterated skew polynomial ring $A[y ; \alpha][x ; \beta, \delta]$, where $\delta(A)=0$ and $\delta(y)=v$.
ya $=\alpha(a) y$ for all $a \in A$,
$x a=\beta(a) x$ for all $a \in A$ and
$x y=\rho y x+v$.

ambiskew polynomial rings

The data: a k-algebra A,
two commuting k-automorphisms of A, α and $\gamma, \beta:=\alpha^{-1} \gamma$,
$v \in A$ such that va $=\gamma(a) v \forall a \in A$ and $\gamma(v)=v(v$ is
γ-normal),
$\rho \in k \backslash\{0\}$.
Form $A[y ; \alpha]$ and set $\beta(y)=\rho y$ so that $\beta \in \operatorname{Aut}_{k}(A[y ; \alpha])$. The ambiskew polynomial ring $R=R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y ; \alpha][x ; \beta, \delta]$, where $\delta(A)=0$ and $\delta(y)=v$.

ambiskew polynomial rings

The data: a k-algebra A, two commuting k-automorphisms of A, α and $\gamma, \beta:=\alpha^{-1} \gamma$, $v \in A$ such that $v a=\gamma(a) v \forall a \in A$ and $\gamma(v)=v(v$ is γ-normal),
$\rho \in k \backslash\{0\}$.
Form $A[y ; \alpha]$ and set $\beta(y)=\rho y$ so that $\beta \in \operatorname{Aut}_{k}(A[y ; \alpha])$. The ambiskew polynomial ring $R=R(A, \alpha, v, \rho)$ is the iterated skew polynomial ring $A[y ; \alpha][x ; \beta, \delta]$, where $\delta(\boldsymbol{A})=0$ and $\delta(y)=v$.

$$
\begin{aligned}
& y a=\alpha(a) y \text { for all } a \in A, \\
& x a=\beta(a) x \text { for all } a \in A \text { and } \\
& x y=\rho y x+v .
\end{aligned}
$$

Examples

$A=k, \alpha=\gamma=\mathrm{id}$

- $A_{1}(k)$, the first Weyl algebra: $x y-y x=1, \rho=v=1$.
- the quantum plane: $x y=q y x, \rho=q, v=0$.
- the quantised Weyl algebra $A_{1}^{q}(k): x y-q y x=1$, $\rho=q, v=1$.
$A=k[h]: U\left(s l_{2}\right)$, particular examples due to Witten, Woronowicz, Podleś, Kirkman/Small, general classes due to Smith, Rueda, Le Bruyn, Benkart/Roby (down-up algebras), Cassidy/Shelton (generalized down-up algebras).

Examples

A $=k, \alpha=\gamma=\mathrm{id}$

- $A_{1}(k)$, the first Weyl algebra: $x y-y x=1, \rho=v=1$.
- the quantum plane: $x y=q y x, \rho=q, v=0$.
- the quantised Weyl algebra $A_{1}^{q}(k): x y-q y x=1$,
$A=k[h]: U\left(s l_{2}\right)$,particular examples due to Witten, Woronowicz, Podleś, Kirkman/Small, general classes due to Smith, Rueda, Le Bruyn, Benkart/Roby (down-up algebras), Cassidy/Shelton (generalized down-up algebras).

Examples

$A=k, \alpha=\gamma=\mathrm{id}$

- $A_{1}(k)$, the first Weyl algebra: $x y-y x=1, \rho=v=1$.
- the quantum plane: $x y=q y x, \rho=q, v=0$.
- the quantised Weyl algebra $A_{1}^{q}(k): x y-q y x=1$,

$$
\rho=q, v=1
$$

$A=k[h]: U\left(s l_{2}\right)$, particular examples due to Witten, Woronowicz, Podleś, Kirkman/Small, general classes due to Smith, Rueda, Le Bruyn, Benkart/Roby (down-up algebras), Cassidy/Shelton (generalized down-up algebras).

Examples

$A=k, \alpha=\gamma=\mathrm{id}$

- $A_{1}(k)$, the first Weyl algebra: $x y-y x=1, \rho=v=1$.
- the quantum plane: $x y=q y x, \rho=q, v=0$.
- the quantised Weyl algebra $A_{1}^{q}(k): x y-q y x=1$, $\rho=q, v=1$.
$A=k[h]: U\left(s l_{2}\right)$, particular examples due to Witten,

Examples

$A=k, \alpha=\gamma=\mathrm{id}$

- $A_{1}(k)$, the first Weyl algebra: $x y-y x=1, \rho=v=1$.
- the quantum plane: $x y=q y x, \rho=q, v=0$.
- the quantised Weyl algebra $A_{1}^{q}(k): x y-q y x=1$, $\rho=q, v=1$.
$A=k[h]: U\left(s l_{2}\right)$, particular examples due to Witten, Woronowicz, Podleś, Kirkman/Small,
algebras), Cassidy/Shelton (generalized down-up
algebras).

Examples

$A=k, \alpha=\gamma=\mathrm{id}$

- $A_{1}(k)$, the first Weyl algebra: $x y-y x=1, \rho=v=1$.
- the quantum plane: $x y=q y x, \rho=q, v=0$.
- the quantised Weyl algebra $A_{1}^{q}(k): x y-q y x=1$, $\rho=q, v=1$.
$A=k[h]: U\left(s l_{2}\right)$, particular examples due to Witten, Woronowicz, Podleś, Kirkman/Small, general classes due to Smith, Rueda, Le Bruyn,

Examples

$A=k, \alpha=\gamma=\mathrm{id}$

- $A_{1}(k)$, the first Weyl algebra: $x y-y x=1, \rho=v=1$.
- the quantum plane: $x y=q y x, \rho=q, v=0$.
- the quantised Weyl algebra $A_{1}^{q}(k): x y-q y x=1$, $\rho=q, v=1$.
$A=k[h]: U\left(s l_{2}\right)$, particular examples due to Witten, Woronowicz, Podleś, Kirkman/Small, general classes due to Smith, Rueda, Le Bruyn, Benkart/Roby (down-up algebras), Cassidy/Shelton (generalized down-up algebras).

Examples

$$
\begin{aligned}
& A=k\left[K^{ \pm 1}\right]: U_{q}\left(s I_{2}\right) \\
& A=k[b, c]: O_{q}\left(M_{2}(k)\right)
\end{aligned}
$$

very recent and with combinatorial motivation
$A=k\left[h, K^{ \pm 1}\right]$: augmented down-up algebras
(Terwilliger/Worawannatoi, combinatorial motivation)

By iteration, higher quantized Weyl algebras.

Examples

$$
\begin{aligned}
& A=k\left[K^{ \pm 1}\right]: U_{q}\left(s I_{2}\right) \\
& A=k[b, c]: O_{q}\left(M_{2}(k)\right)
\end{aligned}
$$

very recent and with combinatorial motivation

$A=k\left[h, K^{ \pm 1}\right]$: augmented down-up algebras
(Terwilliger/Worawannatoi, combinatorial motivation)

By iteration, higher quantized Weyl algebras.

Examples

$$
\begin{aligned}
& A=k\left[K^{ \pm 1}\right]: U_{q}\left(s I_{2}\right) \\
& A=k[b, c]: O_{q}\left(M_{2}(k)\right)
\end{aligned}
$$

very recent and with combinatorial motivation
$A=k\left[h, K^{ \pm 1}\right]$: augmented down-up algebras
(Terwilliger/Worawannatoi, combinatorial motivation)

By iteration, higher quantized Weyl algebras.

Examples

$$
\begin{aligned}
& A=k\left[K^{ \pm 1}\right]: U_{q}\left(s l_{2}\right) \\
& A=k[b, c]: O_{q}\left(M_{2}(k)\right)
\end{aligned}
$$

very recent and with combinatorial motivation
$A=k\left[h, K^{ \pm 1}\right]$: augmented down-up algebras
(Terwilliger/Worawannatoi, combinatorial motivation)

By iteration, higher quantized Weyl algebras.

Casimir elements

Suppose there exists a γ-normal element $u \in A$ such that $v=u-\rho \alpha(u)$.
$z:=x y-u=\rho(y x-\alpha(u))$ is such that $z y=\rho y z$,
$z x=\rho^{-1} x z, z a=\gamma(a) z$ for all $a \in A$ and $z u=u z$.
Hence $z R=R z$ and R is not simple.
If such a u exists then it is a splitting element, z is a Casimir element and R is conformal; otherwise R is singular.

Casimir elements

Suppose there exists a γ-normal element $u \in A$ such that $v=u-\rho \alpha(u)$.
$z:=x y-u=\rho(y x-\alpha(u))$ is such that $z y=\rho y z$,
$z x=\rho^{-1} x z, z a=\gamma(a) z$ for all $a \in A$ and $z u=u z$.
Hence $z R=R z$ and R is not simple.
If such a u exists then it is a splitting element, z is a
Casimir element and R is conformal; otherwise R is
singular.

Casimir elements

Suppose there exists a γ-normal element $u \in A$ such that $v=u-\rho \alpha(u)$.
$z:=x y-u=\rho(y x-\alpha(u))$ is such that $z y=\rho y z$, $z x=\rho^{-1} x z, z a=\gamma(a) z$ for all $a \in A$ and $z u=u z$. Hence $z R=R z$ and R is not simple.
If such a u exists then it is a splitting element, z is a Casimir element and R is conformal; otherwise R is

Casimir elements

Suppose there exists a γ-normal element $u \in A$ such that $v=u-\rho \alpha(u)$.
$z:=x y-u=\rho(y x-\alpha(u))$ is such that $z y=\rho y z$, $z x=\rho^{-1} x z, z a=\gamma(a) z$ for all $a \in A$ and $z u=u z$. Hence $z R=R z$ and R is not simple.
If such a u exists then it is a splitting element, z is a Casimir element and R is conformal; otherwise R is singular.

The elements $v^{(m)}$

For $m \geq 1, v^{(m)}:=\sum_{l=0}^{m-1} \rho^{\prime} \alpha^{\prime}(v)$.
In particular $v^{(1)}=v . v^{(0)}:=1$.
Each $v^{(m)}$ is γ-normal.
For $m \geq 1$,

In the conformal case, $v^{(m)}=u-\rho^{m} \alpha^{m}(u)$.

The elements $v^{(m)}$

For $m \geq 1, v^{(m)}:=\sum_{l=0}^{m-1} \rho^{\prime} \alpha^{\prime}(v)$.
In particular $v^{(1)}=v . v^{(0)}:=1$.
Each $v^{(m)}$ is γ-normal.

In the conformal case, $v^{(m)}=u-\rho^{m} \alpha^{m}(u)$.

The elements $v^{(m)}$

For $m \geq 1, v^{(m)}:=\sum_{l=0}^{m-1} \rho^{\prime} \alpha^{\prime}(v)$.
In particular $v^{(1)}=v . v^{(0)}:=1$.
Each $v^{(m)}$ is γ-normal.
For $m \geq 1$,

$$
\begin{aligned}
x y^{m}-\rho^{m} y^{m} x & =v^{(m)} y^{m-1} \\
x^{m} y-\rho^{m} y x^{m} & =x^{m-1} v^{(m)} .
\end{aligned}
$$

In the conformal case, $v^{(m)}=u-\rho^{m} \alpha^{m}(u)$.

The elements $v^{(m)}$

For $m \geq 1, v^{(m)}:=\sum_{l=0}^{m-1} \rho^{\prime} \alpha^{\prime}(v)$.
In particular $v^{(1)}=v . v^{(0)}:=1$.
Each $v^{(m)}$ is γ-normal.
For $m \geq 1$,

$$
\begin{aligned}
x y^{m}-\rho^{m} y^{m} x & =v^{(m)} y^{m-1} \\
x^{m} y-\rho^{m} y x^{m} & =x^{m-1} v^{(m)} .
\end{aligned}
$$

In the conformal case, $v^{(m)}=u-\rho^{m} \alpha^{m}(u)$.

Simplicity criterion for R

Theorem: Suppose that char $k=0$. The ring R is simple if and only if
(1) A is α-simple;
(2) R is singular;
(3) for all $m \geq 1, v^{(m)}$ is a unit of A.

There is a more complex simplicity criterion in characteristic p.

Simplicity criterion for R

Theorem: Suppose that char $k=0$. The ring R is simple if and only if
(1) A is α-simple;
(2) R is singular;
(3) for all $m \geq 1, v^{(m)}$ is a unit of A.

There is a more complex simplicity criterion in characteristic p.

Simplicity criterion for R

Theorem: Suppose that char $k=0$. The ring R is simple if and only if
(1) A is α-simple;
(2) R is singular;
(3) for all $m \geq 1, v^{(m)}$ is a unit of A.

There is a more complex simplicity criterion in characteristic p.

Simplicity criterion for R

Theorem: Suppose that char $k=0$. The ring R is simple if and only if
(1) A is α-simple;
(2) R is singular;
(3) for all $m \geq 1, v^{(m)}$ is a unit of A.

There is a more complex simplicity criterion in characteristic p.

Examples of α-simplicity

- A a field extension of k e.g. $k=\mathbb{R}, A=\mathbb{C}, \alpha(z)=\bar{z}$.
- $A=k[t], \alpha(t)=t+1$, char $k=0$. In this case a splitting element u always exists, of degree $1+\operatorname{deg} v$ if $\rho=1$ and deg v if $\rho \neq 1$.
- $A=k\left[t^{ \pm 1}\right], \alpha(t)=q t, q \in k^{*}$ not a root of unity.
- $A=k G, G=\langle t\rangle$ cyclic of order $n, \alpha(t)=\varepsilon t, \varepsilon \in k a$ primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

Examples of α-simplicity

- A a field extension of k e.g. $k=\mathbb{R}, A=\mathbb{C}, \alpha(z)=\bar{z}$.
- $A=k[t], \alpha(t)=t+1$, char $k=0$. In this case a splitting element u always exists, of degree $1+$ deg v if $\rho=1$ and deg v if $\rho \neq 1$.
- $A=k\left[t^{ \pm 1}\right], \alpha(t)=q t, q \in k^{*}$ not a root of unity.
- $A=k G, G=\langle t\rangle$ cyclic of order $n, \alpha(t)=\varepsilon t, \varepsilon \in k a$ primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

Examples of α-simplicity

- A a field extension of k e.g. $k=\mathbb{R}, A=\mathbb{C}, \alpha(z)=\bar{z}$.
- $A=k[t], \alpha(t)=t+1$, char $k=0$. In this case a splitting element u always exists, of degree $1+\operatorname{deg} v$ if $\rho=1$ and deg v if $\rho \neq 1$.

Examples of α-simplicity

- A a field extension of k e.g. $k=\mathbb{R}, A=\mathbb{C}, \alpha(z)=\bar{z}$.
- $A=k[t], \alpha(t)=t+1$, char $k=0$. In this case a splitting element u always exists, of degree $1+\operatorname{deg} v$ if $\rho=1$ and deg v if $\rho \neq 1$.
- $A=k\left[t^{ \pm 1}\right], \alpha(t)=q t, q \in k^{*}$ not a root of unity. primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

Examples of α-simplicity

- A a field extension of k e.g. $k=\mathbb{R}, A=\mathbb{C}, \alpha(z)=\bar{z}$.
- $A=k[t], \alpha(t)=t+1$, char $k=0$. In this case a splitting element u always exists, of degree $1+\operatorname{deg} v$ if $\rho=1$ and deg v if $\rho \neq 1$.
- $A=k\left[t^{ \pm 1}\right], \alpha(t)=q t, q \in k^{*}$ not a root of unity.
- $A=k G, G=\langle t\rangle$ cyclic of order $n, \alpha(t)=\varepsilon t, \varepsilon \in k \mathrm{a}$ primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

Examples of α-simplicity

- A a field extension of k e.g. $k=\mathbb{R}, A=\mathbb{C}, \alpha(z)=\bar{z}$.
- $A=k[t], \alpha(t)=t+1$, char $k=0$. In this case a splitting element u always exists, of degree $1+\operatorname{deg} v$ if $\rho=1$ and deg v if $\rho \neq 1$.
- $A=k\left[t^{ \pm 1}\right], \alpha(t)=q t, q \in k^{*}$ not a root of unity.
- $A=k G, G=\langle t\rangle$ cyclic of order $n, \alpha(t)=\varepsilon t, \varepsilon \in k \mathrm{a}$ primitive nth root of unity.
- A simple e.g. iterating the ambiskew construction.

Examples

If char $k=0, A_{1}(k)$ is, of course, simple: $v^{(m)}=m$, $u-\alpha(u)=0$.

$$
A_{1}^{q}(k) \text { is not simple when } q \neq 1: u=1 /(1-q) \text {, }
$$

$$
u-q \alpha(u)=1 .
$$

Examples

If char $k=0, A_{1}(k)$ is, of course, simple: $v^{(m)}=m$, $u-\alpha(u)=0$.
$A_{1}^{q}(k)$ is not simple when $q \neq 1: u=1 /(1-q)$, $u-q \alpha(u)=1$.

Examples

Consider \mathbb{C} as an \mathbb{R}-algebra with $\alpha(z)=\bar{z}$ and $\gamma=\mathrm{id}_{\mathrm{C}}$. Taking $v=a+i b$ we get the \mathbb{R}-algebra R generated by i, x and y subject to the relations

$$
i^{2}=-1, \quad x i=-i x, \quad y i=-i y, \quad x y-\rho y x=a+i b .
$$

Examples

Consider \mathbb{C} as an \mathbb{R}-algebra with $\alpha(z)=\bar{z}$ and $\gamma=\mathrm{id}_{\mathrm{C}}$. Taking $v=a+i b$ we get the \mathbb{R}-algebra R generated by i, x and y subject to the relations

$$
i^{2}=-1, \quad x i=-i x, \quad y i=-i y, \quad x y-\rho y x=a+i b .
$$

R is singular if and only if either $\rho=1$ and $a \neq 0$ or $\rho=-1$ and $b \neq 0$.
By the condition on $v^{(m)}, R$ is simple if and only if either $\rho=1$ and $a \neq 0$ or $\rho=-1$ and $b \neq 0$.
If $v=1=\rho$, where $x y-y x=1$, then $v^{(m)}=m$ and if
$v=i$ and $\rho=-1$, where $x y+y x=i$, then $v^{(m)}=i m$.

Examples

Consider \mathbb{C} as an \mathbb{R}-algebra with $\alpha(z)=\bar{z}$ and $\gamma=\mathrm{id}_{\mathrm{C}}$. Taking $v=a+i b$ we get the \mathbb{R}-algebra R generated by i, x and y subject to the relations

$$
i^{2}=-1, \quad x i=-i x, \quad y i=-i y, \quad x y-\rho y x=a+i b .
$$

R is singular if and only if either $\rho=1$ and $a \neq 0$ or $\rho=-1$ and $b \neq 0$.
By the condition on $v^{(m)}, R$ is simple if and only if either $\rho=1$ and $a \neq 0$ or $\rho=-1$ and $b \neq 0$.

Examples

Consider \mathbb{C} as an \mathbb{R}-algebra with $\alpha(z)=\bar{z}$ and $\gamma=\mathrm{id}_{\mathrm{C}}$. Taking $v=a+i b$ we get the \mathbb{R}-algebra R generated by i, x and y subject to the relations

$$
i^{2}=-1, \quad x i=-i x, \quad y i=-i y, \quad x y-\rho y x=a+i b .
$$

R is singular if and only if either $\rho=1$ and $a \neq 0$ or $\rho=-1$ and $b \neq 0$.
By the condition on $v^{(m)}, R$ is simple if and only if either $\rho=1$ and $a \neq 0$ or $\rho=-1$ and $b \neq 0$.
If $v=1=\rho$, where $x y-y x=1$, then $v^{(m)}=m$ and if $v=i$ and $\rho=-1$, where $x y+y x=i$, then $v^{(m)}=i m$.

Example with $A=k\left[t^{ \pm 1}\right]$

If $q \in k^{*}$ is not a root of unity and $0 \neq n \in \mathbb{Z}$ then the k-algebra generated by $t^{ \pm 1}, x$ and y subject to the relations

$$
\begin{aligned}
y t & =q t y, \\
x t & =q^{-1} t x \\
x y-q^{-n} y x & =t^{n} .
\end{aligned}
$$

is simple.

Example with $A=k G, G$ finite cyclic

Let char $k=0, n \geq 2$ and $\varepsilon \in k$ be a primitive nth root of unity.
R : k-algebra generated by t, x, y subject to
R is generically simple. For example when $n=2, \varepsilon=-1$ and $\rho=1$ the relations become

Here R is simple if and only if $c_{1} \neq 0$ and $c_{0} \neq \pm m c_{1}$ for all
odd $m \geq 1$.
You might recognise this as a symplectic reflection algebra.

Example with $A=k G, G$ finite cyclic

Let char $k=0, n \geq 2$ and $\varepsilon \in k$ be a primitive nth root of unity.
R : k-algebra generated by t, x, y subject to

$$
\begin{aligned}
t^{n}=1, \quad y t & =\varepsilon t y, \quad x t=\varepsilon^{-1} t x, \\
x y-\rho y x & =c_{0}+c_{1} t+c_{2} t^{2}+\ldots+c_{n-1} t^{n-1} .
\end{aligned}
$$

R is generically simple. For example when $n=2, \varepsilon=-1$ and $\rho=1$ the relations become

Here R is simple if and only if $c_{1} \neq 0$ and $c_{0} \neq \pm m c_{1}$ for all odd $m \geq 1$.
You might recognise this as a symplectic reflection algebra.

Example with $A=k G, G$ finite cyclic

Let char $k=0, n \geq 2$ and $\varepsilon \in k$ be a primitive nth root of unity.
R : k-algebra generated by t, x, y subject to

$$
\begin{aligned}
t^{n}=1, \quad y t & =\varepsilon t y, \quad x t=\varepsilon^{-1} t x \\
x y-\rho y x & =c_{0}+c_{1} t+c_{2} t^{2}+\ldots+c_{n-1} t^{n-1} .
\end{aligned}
$$

R is generically simple.
and $\rho=1$ the relations become

Here R is simple if and only if $c_{1} \neq 0$ and $c_{0} \neq \pm m c_{1}$ for all
odd $m \geq 1$.
You might recognise this as a symplectic reflection
algebra.

Example with $A=k G, G$ finite cyclic

Let char $k=0, n \geq 2$ and $\varepsilon \in k$ be a primitive nth root of unity.
R : k-algebra generated by t, x, y subject to

$$
\begin{aligned}
t^{n}=1, \quad y t & =\varepsilon t y, \quad x t=\varepsilon^{-1} t x \\
x y-\rho y x & =c_{0}+c_{1} t+c_{2} t^{2}+\ldots+c_{n-1} t^{n-1} .
\end{aligned}
$$

R is generically simple. For example when $n=2, \varepsilon=-1$ and $\rho=1$ the relations become

$$
\begin{aligned}
t^{2}=1, \quad y t & =-t y, \quad x t=-t x, \\
x y-y x & =c_{0}+c_{1} t .
\end{aligned}
$$

Here R is simple if and only if $c_{1} \neq 0$ and $c_{0} \neq \pm m c_{1}$ for all
You might recognise this as a symplectic reflection
algebra.

Example with $A=k G, G$ finite cyclic

Let char $k=0, n \geq 2$ and $\varepsilon \in k$ be a primitive nth root of unity.
R : k-algebra generated by t, x, y subject to

$$
\begin{aligned}
t^{n}=1, \quad y t & =\varepsilon t y, \quad x t=\varepsilon^{-1} t x \\
x y-\rho y x & =c_{0}+c_{1} t+c_{2} t^{2}+\ldots+c_{n-1} t^{n-1} .
\end{aligned}
$$

R is generically simple. For example when $n=2, \varepsilon=-1$ and $\rho=1$ the relations become

$$
\begin{aligned}
t^{2}=1, \quad y t & =-t y, \quad x t=-t x, \\
x y-y x & =c_{0}+c_{1} t .
\end{aligned}
$$

Here R is simple if and only if $c_{1} \neq 0$ and $c_{0} \neq \pm m c_{1}$ for all odd $m \geq 1$.
You might recognise this as a symplectic reflection algebra.

Simple higher quantized Weyl algebras

Suppose char $k=0$ and let $\Lambda=\left(\lambda_{i, j}\right)$ be $n \times n$ such that $\lambda_{j, i}=\lambda_{i, j}^{-1}$ for $1 \leq i, j \leq n$. The k-algebra generated by $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$ subject to the relations

is simple. These are iterated ambiskew polynomial rings and special cases of a more general construction.

Simple higher quantized Weyl algebras

Suppose char $k=0$ and let $\Lambda=\left(\lambda_{i, j}\right)$ be $n \times n$ such that $\lambda_{j, i}=\lambda_{i, j}^{-1}$ for $1 \leq i, j \leq n$. The k-algebra generated by $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$ subject to the relations

$$
\begin{aligned}
& y_{j} y_{i}=\lambda_{j, i} y_{i} y_{j}, \\
& y_{j} x_{i}=\lambda_{i, j} x_{i} y_{j}, \\
& x_{j} \leq i<j \leq j \leq n ; \\
& x_{j} y_{i}=\lambda_{i, j} y_{i} x_{j}, \\
& x_{j} x_{i}=\lambda_{j, i} x_{i} x_{j}, \quad 1 \leq i<j \leq n ; \\
& x_{j} y_{j}-y_{j} x_{j}=1, \quad 1 \leq j \leq n \leq n ;
\end{aligned}
$$

is simple.
and special cases of a more general construction.

Simple higher quantized Weyl algebras

Suppose char $k=0$ and let $\Lambda=\left(\lambda_{i, j}\right)$ be $n \times n$ such that $\lambda_{j, i}=\lambda_{i, j}^{-1}$ for $1 \leq i, j \leq n$. The k-algebra generated by $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$ subject to the relations

$$
\begin{aligned}
y_{j} y_{i} & =\lambda_{j, i} y_{i} y_{j}, \quad 1 \leq i<j \leq n ; \\
y_{j} x_{i} & =\lambda_{i, j} x_{i} y_{j}, \quad 1 \leq i<j \leq n ; \\
x_{j} y_{i} & =\lambda_{i, j} y_{i} x_{j}, \quad 1 \leq i<j \leq n ; \\
x_{j} x_{i} & =\lambda_{j, i} x_{i} x_{j}, \quad 1 \leq i<j \leq n ; \\
x_{j} y_{j}-y_{j} x_{j} & =1, \quad 1 \leq j \leq n,
\end{aligned}
$$

is simple. These are iterated ambiskew polynomial rings and special cases of a more general construction.

Removing the Casimir barrier

Suppose that R is conformal so that the Casimir element z is a barrier to simplicity. It can be removed by inverting $z=x y-u$ to form $S:=R_{\mathcal{Z}}:=R_{\left\{z^{\prime}\right\}}$ or factoring out z to form $T:=R / z R$. There are simplicity criteria for both S and T.

Simplicity criterion for S

Theorem: The ring $S=R_{Z}$ is simple if and only if the following hold:
(1) A is $\{\alpha, \gamma\}$-simple;
(2) there do not exist $c \in A$ and $m, j \in \mathbb{Z}$, with m and j not both 0 , such that $\gamma(c)=\rho^{m} c, \alpha(c)=\rho^{j} c$ and $c \gamma^{j}(a)=\alpha^{m}(a) c \forall a \in A ;$
(0) for all $m \geq 1$, there exists n such that $u^{n} \in V^{(m)} A$.

Simplicity criterion for S

Theorem: The ring $S=R_{\mathcal{Z}}$ is simple if and only if the following hold:
(1) A is $\{\alpha, \gamma\}$-simple;
(2) there do not exist $c \in A$ and $m, j \in \mathbb{Z}$, with m and j not both 0 , such that $\gamma(c)=\rho^{m} c$,
(8) for all $m \geq 1$, there exists n such that $u^{n} \in v^{(m)} A$.

Simplicity criterion for S

Theorem: The ring $S=R_{\mathcal{Z}}$ is simple if and only if the following hold:
(1) A is $\{\alpha, \gamma\}$-simple;
(2) there do not exist $c \in A$ and $m, j \in \mathbb{Z}$, with m and j not both 0 , such that $\gamma(c)=\rho^{m} c, \alpha(c)=\rho^{j} c$ and $c \gamma^{j}(a)=\alpha^{m}(a) c \forall a \in A ;$
(8) for all $m \geq 1$, there exists n such that $u^{n} \in v^{(m)} A$.

Simplicity criterion for S

Theorem: The ring $S=R_{\mathcal{Z}}$ is simple if and only if the following hold:
(1) A is $\{\alpha, \gamma\}$-simple;
(2) there do not exist $c \in A$ and $m, j \in \mathbb{Z}$, with m and j not both 0 , such that $\gamma(c)=\rho^{m} c, \alpha(c)=\rho^{j} c$ and $c \gamma^{j}(a)=\alpha^{m}(a) c \forall a \in A ;$
(3) for all $m \geq 1$, there exists n such that $u^{n} \in v^{(m)} A$.

Examples

Examples with S simple:

- the quantum torus $k\left[x^{ \pm 1}, y^{ \pm 1}: x y=q y x\right], q$ is not a root of unity.
- A_{1}^{q} when $x y-y x$ is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;
- $A=k[h], \alpha(h)=h+1, \gamma=\mathrm{id}, \rho$ not a root of unity,
- $A=k\left[h^{ \pm 1}\right], \alpha(h)=q h, \gamma=\mathrm{id}, v=h, S$ is simple if and only if the subgroup of k^{*} generated by q and ρ is free abelian of rank 2.

Examples

Examples with S simple:

- the quantum torus $k\left[x^{ \pm 1}, y^{ \pm 1}: x y=q y x\right], q$ is not a root of unity.
- A_{1}^{q} when $x y-y x$ is inverted and q is not a root of unity;

Examples

Examples with S simple:

- the quantum torus $k\left[x^{ \pm 1}, y^{ \pm 1}: x y=q y x\right], q$ is not a root of unity.
- A_{1}^{q} when $x y-y x$ is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;

Examples

Examples with S simple:

- the quantum torus $k\left[x^{ \pm 1}, y^{ \pm 1}: x y=q y x\right], q$ is not a root of unity.
- A_{1}^{q} when $x y-y x$ is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;
- $A=k[h], \alpha(h)=h+1, \gamma=\mathrm{id}, \rho$ not a root of unity,
and only if the subgroup of k^{*} generated by q and ρ is
free abelian of rank 2.

Examples

Examples with S simple:

- the quantum torus $k\left[x^{ \pm 1}, y^{ \pm 1}: x y=q y x\right], q$ is not a root of unity.
- A_{1}^{q} when $x y-y x$ is inverted and q is not a root of unity;
- localizations of non-simple higher quantized Weyl algebras;
- $A=k[h], \alpha(h)=h+1, \gamma=\mathrm{id}, \rho$ not a root of unity,
- $A=k\left[h^{ \pm 1}\right], \alpha(h)=q h, \gamma=\mathrm{id}, v=h, S$ is simple if and only if the subgroup of k^{*} generated by q and ρ is free abelian of rank 2.

Factor out z

Abusing notation, in $T:=R / z R$,

$$
\begin{aligned}
y a & =\alpha(a) y \text { for all } a \in A, \\
x a & =\beta(a) x \text { for all } a \in A \text { and } \\
x y=u & ; y x=\alpha(u) .
\end{aligned}
$$

This is a (generalized) generalized Weyl algebra in the sense of Bavula.

Simplicity criterion for T

Theorem: T is simple if and only if
(1) A is α-simple;
(2) α^{m} is outer for all $m \geq 1$;
(3) u is regular;
(9) $u A+\alpha^{m}(u) A=A$ for all $m \geq 1$.

Simplicity criterion for T

Theorem: T is simple if and only if
(1) A is α-simple;
(2) α^{m} is outer for all $m \geq 1$;
(3) u is regular;
(c) $u A+\alpha^{m}(u) A=A$ for all $m \geq 1$.

Simplicity criterion for T

Theorem: T is simple if and only if
(1) A is α-simple;
(2) α^{m} is outer for all $m \geq 1$;
(3) u is regular;
(9) $u A+\alpha^{m}(u) A=A$ for all $m \geq 1$.

Simplicity criterion for T

Theorem: T is simple if and only if
(1) A is α-simple;
(2) α^{m} is outer for all $m \geq 1$;
(3) u is regular;
(9) $u A+\alpha^{m}(u) A=A$ for all $m \geq 1$.

